
ECON 897 Test (Week 4)
Aug 5, 2016

Important: This is a closed-book test. No books or lecture notes are permitted. You have 90

minutes to complete the test. Answer all questions. You can use all the results covered in class,

but please make sure the conditions are satisfied. Write your name on each blue book and label

each question clearly. Write legibly. Good luck!

1. (15 points) Let f : R2 −→ R3, g : R3 −→ R and h : R3 −→ R defined by:

f(x, y) = (xy, x cos y, x sin y)

g(x, y, z) = 2x2y + eyz + zx

h(x, y, z) =

z ·
(

x2y
x2+y2

)
if x, y 6= 0

0 otherwise

(a) Are the functions f , g and h differentiable? Be sure to say why they are or why they

are not.

Proof. f and g are differentiable because their partial derivatives exist and are continuous.

The derivative representations are the matrices of partial derivatives. h is not differen-

tiable, since it is not continuous, for example, at (0, 0, 1). We proved this in class.

(b) Define s = g ◦ f . Find the representation matrix of (Ds)(x,y).

Proof. Apply the chain rule: (Ds)(x,y) = (Df)f(x,y) · (Df)(x,y)

(c) Do the representation matrices of (D2f)(x,y) and (D2g)(x,y,z) exist? If they do, find

them.

Proof. The representation matrix for the second derivative of g exists, since the function

goes to R. The representation matrix is the hessian (matrix of second partials). However,

there does not exist a matrix representation of (D2f)(x,y), since the function is a bilinear

form to R3.
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2. (20 points) A firm currently produces a good according to the production:

f(k, l) = Akαlβ

The factors of production k and l are hired at market prices r and w, respectively. The firm

chooses the amounts of labor and capital hired that maximize profits, which are given by the

first order conditions:

αPAkα−1lβ = r, βPAkαlβ−1 = w

(a) Compute the hessian of f .

Proof. [
α(α− 1)Akα−2lβ αβAkα−1lβ−1

αβAkα−1lβ−1 β(β − 1)Akαlβ−2

]

(b) Use the Implicit Function Theorem to find expressions for the derivatives of k and l with

respect to the prices P , w and r? State clearly any assumptions we have to make.

Proof. Define:

B = P ·

[
α(α− 1)Akα−2lβ αβAkα−1lβ−1

αβAkα−1lβ−1 β(β − 1)Akαlβ−2

]
, A =

[
αAkα−1lβ 1 0

βAkαlβ−1 0 1

]
A sufficient condition for k and l to be defined as implicit functions of P , r and w is that

B be an invertible matrix. This happens, for example, if α+ β 6= 1. Assuming this, the

derivatives are given by the matrix B−1 ·A.

3. (20 points) Let f : Rn+ → R such that f(x) = h(x)
g(x) and h(x), g(x) > 0 for all x ∈ Rn+.

Assume h is concave and g is convex. Show that f is quasiconcave.

Proof. Let x, x′ ∈ X, λ ∈ [0, 1] and xλ = λx+ (1− λ)x′. By concavity of h and convexity of

g:

f(xλ) =
h(xλ)

g(xλ)
≥ λh(x) + (1− λ)h(x′)

λg(x) + (1− λ)g(x′)

Assume, without loss of generality, that f(x) ≥ f(x′). Then:

f(xλ) =
h(xλ)

g(xλ)
≥ λh(x) + (1− λ)h(x′)

λg(x) + (1− λ)g(x′)

=
λf(x)g(x) + (1− λ)f(x′)g(x′)

λg(x) + (1− λ)g(x′)

≥ λf(x′)g(x) + (1− λ)f(x′)g(x′)

λg(x) + (1− λ)g(x′)

= f(x′) · λg(x) + (1− λ)g(x′)

λg(x) + (1− λ)g(x′)

= f(x′) = min{f(x), f(x′)}
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Which means that f is quasiconcave.

4. (20 points) Let f : X → R, where X ⊆ Rn non-empty and convex set. Assume f is a

strictly quasiconcave function.

(a) Show that any local maximum is a global maximum.

Proof. Let x0 ∈ X be a local maximum. Then, there exists ε > 0 such that f(x0) ≥ f(x)

for all x ∈ B(x0, ε). Assume x0 is not a global maximum, so there exists x1 ∈ X such

that f(x1) > f(x0). Since X is convex xλ = λx1+(1−λ)x0 ∈ X. Choosing λ sufficiently

close to 0,

f(xλ) ≤ f(x0) = min{f(x0), f(x1)}

which is a contradiction to f being strictly quasiconcave.

(b) Argue that any global maximum must be unique.

Proof. Assume x and x′ are global maxima, x 6= x′. Given that f is strictly quasiconcave,

f(λx+ (1− λ)x′) > f(x), λ ∈ (0, 1), which contradicts x being global maximum. Thus,

x = x′ and any global maximum is unique.

5. (25 points) Suppose f : (a, b)→ R is concave.

(a) Fix any x0 and define

g(x) =
f(x)− f(x0)

x− x0
∀x ∈ (a, b)\{x0}.

Prove that g is a decreasing function.

Proof. Pick any x < x′. There are three cases x0 < x < x′, x < x0 < x′ and x < x′ < x0.

We show the case x0 < x < x′, other cases are similar. Because

x =
x′ − x
x′ − x0

x0 +
x− x0
x′ − x0

x′,

we have

f(x) ≥ x′ − x
x′ − x0

f(x0) +
x− x0
x′ − x0

f(x′).

But this is equivalent to

f(x′)− f(x0)

x′ − x0
≤ f(x)− f(x0)

x− x0
.
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(b) Use part (a) to prove f is continuous.

Proof. Fix any x0 ∈ (a, b). There exists x, x ∈ (a, b) such that x < x0 < x. Then for any

x between x and x, we have

f(x)− f(x0)

x− x0
≤ f(x)− f(x0)

x− x0
≤ f(x)− f(x0)

x− x0
.

Assume x > x0. Then the above inequalities imply

f(x)− f(x0)

x− x0
(x− x0) ≤ f(x)− f(x0) ≤

f(x)− f(x0)

x− x0
(x− x0).

Sandwich theorem implies limx→x0+
[
f(x) − f(x0)] = 0. Similarly, if x < x0 then the

above inequalities imply

f(x)− f(x0)

x− x0
(x− x0) ≤ f(x)− f(x0) ≤

f(x)− f(x0)

x− x0
(x− x0).

Again sandwich theorem implies limx→x0−
[
f(x)− f(x0)

]
= 0.

Remark: Note that the limits are taken when x −→ x0, while leaving x and x̄ fixed. The

function might not be differentiable, so limits as x or x̄ tend to x0 might not exist.
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